Kinetics of removal and reappearance of non-transferrin-bound plasma iron with deferoxamine therapy.

نویسندگان

  • J B Porter
  • R D Abeysinghe
  • L Marshall
  • R C Hider
  • S Singh
چکیده

The rapidity and duration of the response of non-transferrin-bound iron (NTBPI) to chelation therapy are largely unknown and have important implications for the design of optimal chelation regimens. Methodology was developed to measure simultaneously NTBPI, deferoxamine (DFO), and its major metabolite. NTBPI was present in all but 2 of 28 thalassaemia major (TM) patients who had received conventional subcutaneous DFO the previous night, suggesting a short duration of NTBPI clearance by DFO. The detailed kinetics of NTBPI were therefore studied in response to intravenous DFO at 50 mg/kg/27 h for 48 hours and compared in 17 regularly transfused TM and 8 untransfused thalassaemia intermedia (TI) patients to determine the influence of hypertransfusion and iron overload on NTBPI response. Before DFO infusion, NTBPI was present in all patients and was significantly higher in TI (4.52 +/- 0.53 mumol/L) than TM (2.92 +/- 0.03 mumol/L; P = .03). NTBPI values in TM correlated with transferrin saturation (r = .6, P = .03) but not with serum ferritin. Removal of NTBPI by intravenous DFO is in a biphasic manner. The initial rapid rate constant (alpha) was similar in TI (1.5 hour-1) and TM (1.6 hour-1), but the subsequent beta phase was slower (0.04 hour-1) in TI when compared with TM (0.4 hour-1, P = .002). Detectable NTBPI persisted during the beta phase, particularly in TI, despite an excess of plasma DFO also being present (steady state 8 mumol/L). On cessation of DFO infusion, NTBPI reappearance was rapid; the kinetics also being biphasic. The rapid initial rate constant (alpha = 2.5 hour-1) lasted less than 30 minutes and was approximately equal to the summation of the initial rate constant for removal of DFO (1.8 hour-1) and its major metabolite (0.6 hour-1). This was followed by a slower return to pretreatment levels, usually between 6 and 12 hours, which was faster in TI than in TM. This marked NTBPI lability supports the use of continuous rather than intermittent DFO in high risk patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Timed non-transferrin bound iron determinations probe the origin of chelatable iron pools during deferiprone regimens and predict chelation response.

BACKGROUND Plasma non-transferrin bound iron refers to heterogeneous plasma iron species, not bound to transferrin, which appear in conditions of iron overload and ineffective erythropoiesis. The clinical utility of non-transferrin bound iron in predicting complications from iron overload, or response to chelation therapy remains unproven. We undertook carefully timed measurements of non-transf...

متن کامل

Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy.

The nature of non-transferrin-bound iron in the plasma or serum of iron-overloaded hemochromatosis patients was studied by high performance liquid chromatography (HPLC) and high resolution nuclear magnetic resonance (NMR). 500-MHz proton Hahn spin-echo NMR spectra of plasma or serum, combined with the use of the iron chelator desferrioxamine, suggests complexation of iron ions with citrate and ...

متن کامل

Expression of hepcidin in hereditary hemochromatosis: evidence for a regulation in response to the serum transferrin saturation and to non-transferrin-bound iron.

Experimental data suggest the antimicrobial peptide hepcidin as a central regulator in iron homeostasis. In this study, we characterized the expression of human hepcidin in experimental and clinical iron overload conditions, including hereditary hemochromatosis. Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we determined expression of hepcidin and the most relevan...

متن کامل

A widespread deferoxamine-mediated iron-uptake system in Vibrio vulnificus.

Vibrio vulnificus can use the standard iron chelator deferoxamine (Desferal) for efficient iron-uptake via the specific receptor DesA, which is encoded by desA. We investigated the ubiquity of the deferoxamine-mediated iron-uptake system in V. vulnificus strains and the potential risk of the system. By polymerase chain reaction (PCR), desA was found in 10 of 10 clinical strains and in 9 of 10 e...

متن کامل

Combined chelation therapy with deferasirox and deferoxamine in thalassemia.

Iron overload is the primary cause of mortality and morbidity in thalassemia major despite advances in chelation therapy. We performed a pilot clinical trial to evaluate the safety and efficacy of combined therapy with deferasirox (DFX, 20-30 mg/kg daily) and deferoxamine (DFO, 35-50mg/kg on 3-7 days/week) in 22 patients with persistent iron overload or organ damage. In the 18 subjects completi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 1996